SdiA, an N-Acylhomoserine Lactone Receptor, Becomes Active during the Transit of Salmonella enterica through the Gastrointestinal Tract of Turtles

نویسندگان

  • Jenee N. Smith
  • Jessica L. Dyszel
  • Jitesh A. Soares
  • Craig D. Ellermeier
  • Craig Altier
  • Sara D. Lawhon
  • L. Garry Adams
  • Vjollca Konjufca
  • Roy Curtiss
  • James M. Slauch
  • Brian M. M. Ahmer
چکیده

BACKGROUND LuxR-type transcription factors are typically used by bacteria to determine the population density of their own species by detecting N-acylhomoserine lactones (AHLs). However, while Escherichia and Salmonella encode a LuxR-type AHL receptor, SdiA, they cannot synthesize AHLs. In vitro, it is known that SdiA can detect AHLs produced by other bacterial species. METHODOLOGY/PRINCIPAL FINDINGS In this report, we tested the hypothesis that SdiA detects the AHL-production of other bacterial species within the animal host. SdiA did not detect AHLs during the transit of Salmonella through the gastrointestinal tract of a guinea pig, a rabbit, a cow, 5 mice, 6 pigs, or 12 chickens. However, SdiA was activated during the transit of Salmonella through turtles. All turtles examined were colonized by the AHL-producing species Aeromonas hydrophila. CONCLUSIONS/SIGNIFICANCE We conclude that the normal gastrointestinal microbiota of most animal species do not produce AHLs of the correct type, in an appropriate location, or in sufficient quantities to activate SdiA. However, the results obtained with turtles represent the first demonstration of SdiA activity in animals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salmonella Typhimurium invasion of HEp-2 epithelial cells in vitro is increased by N-acylhomoserine lactone quorum sensing signals

BACKGROUND In Gram-negative bacteria, the most commonly studied quorum sensing signals are the N-acylhomoserine lactones (AHLs). In Salmonella, AHLs are recognized by SdiA, which is believed to be a sensor of AHLs produced by other bacteria, since Salmonella does not produce AHLs itself. It has been speculated that AHLs produced by the gastrointestinal flora may influence the regulation of viru...

متن کامل

SdiA of Salmonella enterica is a LuxR homolog that detects mixed microbial communities.

Proteins of the LuxR family detect the presence of N-acylhomoserine lactones (AHLs) and regulate transcription accordingly. When AHLs are synthesized by the same species that detects them, the system allows a bacterium to measure the population density of its own species, a phenomenon known as quorum sensing. The sdiA genes of Escherichia coli and Salmonella enterica serovar Typhimurium are pre...

متن کامل

Salmonella SdiA recognizes N-acyl homoserine lactone signals from Pectobacterium carotovorum in vitro, but not in a bacterial soft rot.

Genomes of Salmonella enterica isolates, including those linked to outbreaks of produce-associated gastroenteritis, contain sdiA, which encodes a receptor of N-acyl homoserine lactones (AHL). AHL are the quorum-sensing signals used by bacteria to coordinately regulate gene expression within -their populations. Because S. enterica does not produce its own AHL, SdiA is hypothesized to function in...

متن کامل

Yersinia enterocolitica inhibits Salmonella enterica serovar Typhimurium and Listeria monocytogenes cellular uptake.

Yersinia enterocolitica biovar 1B employs two type three secretion systems (T3SS), Ysa and Ysc, which inject effector proteins into macrophages to prevent phagocytosis. Conversely, Salmonella enterica serovar Typhimurium uses a T3SS encoded by Salmonella pathogenicity island 1 (SPI1) to actively invade cells that are normally nonphagocytic and a second T3SS encoded by SPI2 to survive within mac...

متن کامل

Effect of sdiA on biosensors of N-acylhomoserine lactones.

Many gram-negative bacteria synthesize N-acylhomoserine lactones (AHLs) and then use transcription factors of the LuxR family to sense and respond to AHL accumulation in the environment; this phenomenon is termed quorum sensing. Bacteria produce a variety of AHLs, and numerous bacterial reporter strains, or biosensors, that can detect subsets of these molecules have been constructed. Many of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008